Cohort studies hepatitis C treatment

Geoff Dusheiko
University College London
Kings College Hospital and Public Health England

Types of cohort study

- Access to and impact of treatment
- Ethnic, geographic differences
- Outcomes of SVR
- Liver transplant
- Effect on comorbidities
- Hepatocellular carcinoma

- Access to and impact of treatment
- Ethnic and geographic differences
- Outcomes of SVR
- Liver transplant
- Effect on comorbidities
- Hepatocellular carcinoma

Annual hepatitis C virus regimens initiating and achieving sustained virological response

All treatments January 1999 to 31 December 2015 (n = 105 369 VA system)

21-fold increase in the number of patients achieving HCV cure.

Moon, A. M., et al. (2017). Aliment Pharmacol Ther 45(9): 1201-1212

Decline in the proportion of patients on liver transplant waitlists United States and in Europe: public health population benefits

Etiology of cirrhosis hepatitis C since the introduction of DAAs

US Scientific Registry of Transplant Recipients annually from 2003 through 2015

Data from the European Liver Transplant Registry from January 2007 to June 2017

- Access to and impact of treatment
- Ethnic and geographic differences
 - Genotype
- Outcomes of SVR
- Liver transplant
- Effect on comorbidities
- Hepatocellular carcinoma

Effectiveness of therapy in 16,567 DAA-treated people in England: High response rates in HCV G3 infection regardless of degree of fibrosis, but RBV improves response in cirrhosis

Subtypes African patients south London

SVR rates suboptimal with non 1a and 1b and non 4a/4d and first gen NS5A inhibirors

Efficacy of DAAs in Chinese HCV-GT3 patients

SOF-based regimens effective. SOF VEL higher response rates

Tao, Y. C., et al. (2018). <u>Virol J</u> **15**(1): 150

The impact of genotype 3 and non-3 on HCC incidence and on disease progression in chronic HCV: Asian patients

n=1448 three Korean centres: 10-year cumulative occurrence rates of HCC and progression

- Access to and impact of treatment
- Ethnic and geographic differences
 - Genotype
- Outcomes of SVR
- Liver transplant
- Effect on comorbidities
- Hepatocellular carcinoma

Incidence death, hepatocellular carcinoma, and decompensated cirrhosis between patients treated with direct-acting antivirals and those untreated: Cirrhosis

Observational cohort study French ANRS CO22 Hepather cohort: 2012 - 2015, 9895 included in analyses. Median follow-up 33.4 months Treatment DAA in 7344 patients, and 2551 UnRx

Carrat, F., et al. (2019). <u>Lancet</u> **393**(10179): 1453-1464.

Improvement in liver function and re-compensation

Prospective multicentre study among patients with **Child-Pugh B cirrhosis** of an Italian cohort (LINA cohort) (89) who received treatment with DAAs: status at different times of observation

Treatment of hepatitis C with direct-acting antivirals reduces liver-related hospitalizations in patients with cirrhosis

Retrospective cohort analysis single US center: Compared patients HCV cirrhosis according to treatment/no treatment status: primary outcome was the difference in the incidence rate of liver-related hospitalizations

Hill, L. A., et al. (2018). <u>Eur J Gastroenterol Hepatol</u> **30**(11): 1378-1383.

- Access to and impact of treatment
- Ethnic and geographic differences
 - Genotype
- Outcomes of SVR
- Liver transplant: indication and outcome
- Effect on comorbidities
- Hepatocellular carcinoma

Trends in waiting list registration before and after direct-acting antiviral introduction.

Ferrarese, A., et al. (2018). World J Gastroenterol 24(38): 4403-4411.

- Access to and impact of treatment
- Ethnic and geographic differences
 - Genotype
- Outcomes of SVR
- Liver transplant
- Effect on comorbidities
- Hepatocellular carcinoma

Impact of HCV eradication on HbA1c (%)

2,435 patients with diabetes who underwent DAAtreatment for HCV in the national VA system.

			Absolute change in HbA _{1c} (post-treatment from	Mean difference in HbA _{1c}		Adjusted* mean difference in HbA _{1c}	
	Pretreatment HbA _{1c}	Post-treatment HbA _{1c}	pretreatment)	drop in SVR vs. no SVR groups	P value	drop in SVR vs. no SVR	P value
All patients							
No SVR SVR	7.27 (1.6) 7.20 (1.5)	7.08 (1.5) 6.82 (1.3)	-0.19 (1.3) -0.37 (1.2)	-0.18	0.03	-0.13	0.1
Patients with pretreatment HbA _{1c} >7.2%							
No SVR SVR	8.54 (1.2) 8.54 (1.2)	7.89 (1.6) 7.56 (1.3)	-0.65 (1.5) -0.98 (1.4)	-0.33	0.02	-0.34	0.02
Patients with pretreatment HbA $_{1c} \leq 7.2\%$							
No SVR SVR	6.1 (0.7) 6.2 (0.6)	6.4 (1.06) 6.3 (0.9)	0.22 (0.9) 0.07 (0.8)	-0.15	0.04	-0.05	0.5
Patients with cirrhosis							
No SVR SVR	7.2 (1.5) 7.1 (1.5)	6.9 (1.4) 6.8 (1.3)	-0.27 (1.35) -0.30 (1.29)	-0.02	0.8	0.05	0.7
Patients without cirrhosis							
No SVR SVR	7.4 (1.6) 7.2 (1.4)	7.3 (1.6) 6.8 (1.2)	-0.09 (1.3) -0.42 (1.2)	-0.33	0.005	-0.31	0.01

Values are reported as mean (SD) unless otherwise indicated. *Adjusted by multiple linear regression for age, sex, race/ethnicity, cirrhosis, platelet count, hemoglobin level, creatinine, bilirubin, albumin, INR, BMI, and FIB-4 score.

Future studies are needed to determine to assess long-term effect on complications of diabetes such as nephropathy, neuropathy, and cardiovascular disease

Hum, J., et al. (2017). <u>Diabetes Care</u> **40**(9): 1173-1180

- Access to and impact of treatment
- Ethnic and geographic differences
 - Genotype
- Outcomes of SVR
- Liver transplant
- Effect on comorbidities
- Hepatocellular carcinoma

Advances with direct acting antivirals

- Current DAA efficacy and safety means an ability to treat cirrhosis
 - Large numbers of older patients, advanced disease treated with DAA's
- DAAs reduce the mortality that is caused by worsening of liver function
- HCC
 - Any increased incidence of HCC would nullify the survival benefits

Probability of HCC free by etiology: cirrhosis

116,404 patients with cirrhosis diagnosed between 2001-2014 VA healthcare and determined incident HCC cases from date of cirrhosis diagnosis until 01/31/2017.

Patients HCV cirrhosis >3 times higher incidence HCC than patients with ALD NAFLD or OTHER (1.0/100

Ioannou, G. N., et al. (2018). PLoS One 13(9): e0204412.

HCC after SVR with IFN versus DAA: ERCHIVES study

Untreated cirrhosis significantly higher HCC incidence compared to those treated with IFN DAA's: Risk not higher in DAA treated patients

Cumulative incidence of HCC

ctive cohort study 22,500 patients treated with DAA agen

Kanwal F₁ et al Gastroenterology 2017:15 Maan and Feld Gastroenterology 2017 153(4

Survival free of HCC by cirrhosis and SVR status after DA

62,354 patients who initiated antiviral treatment VA 1999- 2015 (17 years)

Ioannou GN et al Journal of

Time to HCC recurrence HCC
443 patients with curative resection or ablation of HCC
in HCV-related

Petta S et al Alimentary pharmacology & therapeut

Proposed study design for evaluating the risk of recurrent HCC associated with DAA treatment

Ioannou, G. N. and J. J. Feld (2019). <u>Gastroenterology</u> **156**(2): 446-460 e442.

Cohort study design required: elements

- Follow-up time begins
 - Start of antiviral therapy treated patients and at the "Index date" for untreated patients
- Evidence of lack of residual tumor
- Date: equal duration time from time of HCC treatment.
- Treated and untreated accounts for immortal time bias: a matching scheme used.
- Comparison between treated and untreated patients adjusted for baseline characteristics that are associated with tumor recurrence
- Treated and untreated patients need to have similar and adequate methods of surveillance for HCC

Vascularization of hypovascular nodules after DAA therapy.

21 months Before DAA therapy 6 months After DAA therapy S8 Arterial S8 HBP **S8** S5 Arterial S5 HBP

Ooka, Y., et al. (2018). <u>Hepatol Int</u> **12**(6): 523-530.

SVR rates in patients with HCC, HCC/LT, and no HCC.

Beste, L. A., et al. (2017). <u>J Hepatol</u> **67**(1): 32-39.

Conclusions

- Cohort studies added considerably to knowledge of the natural history and treatment outcome hepatitis C
- Considerable hierarchy of evidence
- Include impact on severe outcomes and resource use – informed policy
- Some cohorts (recurrent HCC DAA) interpretation more difficult
 - Non identical groups, and methodological challenges